
We are uncovering
better ways of

developing software
by doing it and

helping others do it.

Fast Food
vs.

Homemade Agile
Uncovering Better Ways
of Delivering Software

Jeffrey Davidson / @JeffreyGoodReq
#dsmAgile / Sept 9, 2016

We are uncovering
better ways of

developing software
by doing it and

helping others do it.

reimagining Agile

Proposing An Updated
Set of Processes and Practices to

Achieve High-Performance Delivery

reimagining Agile

Proposing A Updated Personalized
Set of Processes and Practices to

Achieve High-Performance Delivery

Potentially
Shippable
Product

Increment

Time-
boxed
SprintBacklog

Items

24 hours

Daily
Standup

Prioritized
Product
Backlog

We uncovered the
only better way of

developing software.
Do it our way.

You’re welcome.

Wow!

This guy makes
a lot of sense.

Hmm.
I wonder what
Jeffrey’s Agile

would look like?

Performance
High

Performance

Technical
Stack

Business
Domain Teamwork

B
el
ie
fs
: 3
 K
ey
s
to
 H
ig
h-

Pe
rf
or
m
an

ce

Automated
testing

Automated
build process

Search for
improvement

Daily clean
code

Start How You Mean To Go: 4 Practices

These practices will slow us to
start,

And accelerate us forever more

Understanding is Everything: 3 Levels

Impact

User
Stories

Daily Slices

• Results in terms of
measurable change

• Not a scope item list

• Customer viable
• Have Acceptance

Criteria

• Testable / Provable
• May not be customer

viable

At the end of every day I
finished something that
makes a tangible difference.

broken into

completed via

Time

Work Organization

User Stories are organized into a Story Map,
which serves as

ª Guide to Investment Experiments
ª Planning Runway
ª Roadmap

Activity 1

Role Task 1 Role Task 2 Role Task 3 Role Task 4 Role Task 5

Task Detail
(User Story)

Task Detail
(User Story)

Task Detail
(User Story)

Task Detail
(User Story)

Task Detail
(User Story)

Task Detail
(User Story)

Task Detail
(User Story)

Ceremonies: Only When Required
for

Understanding
for

Validation
for Finding

Improvement

Impact X X
Story Map X X
User Story X X X
Daily Slice X X

Release X
Impact 10% Party

Recommended: Every time the team delivers measurable impact to
the customer or business process there shall be a “Gathering of Joy.”

Feedback Loops
• When the Impact is reached

• When a User Story is done

• When we think we can improve

Slices
• Planning your daily slice requires

everyone involved in that slice
and may not require the whole team.

• If it takes too long to plan your daily
slice, do it differently. For example:
– Try slicing differently
– Try planning your daily slices simultaneously
– Try less planning, more building
– Try _______

What, Not Who: team stuff
• Skills, not roles
– I expect to have the right technical expertise to

understand business needs, develop in our
technical stack, and validate our deliverables

• Cross-functional is better than silos
and sole-functional
– It’s a journey. You can grow into it over time.

• No defined team size

How Big Is It: determining project size

– After the team has agreed to the story map,
they may estimate user stories in terms of daily
slices

– Daily slices may be added up within the story
map to determine estimated project size,
release dates, or other metrics

– Anyone may request a re-estimation from the
entire team

What about Estimation?

How Big is TOO Big?
We don’t know (!!), but maybe when:
• Daily slices take more than 5 people
• User stories take more than 20 – 30

daily slices
• User stories take more than 3 weeks
• Releases take more than 3 months

Potentially
Shippable
Product

Increment

Time-
boxed
SprintBacklog

Tasks

24 hours

Daily
Standup

Prioritized
Product
Backlog

ShuHaRi

Perspective
Mapping

Developed by Christopher Webb

Small
releases

Sprint
Planning

(1&2)

Product
Backlog

Sprint
Backlog

Poker
Planning

User Story

Daily
Meeting

Relative Estimation

Definition of Ready

3 qns

Burndown
Chart

Refinement
Meeting

Definition
of Done

Sprint
Review

(Showcase)

Retrospective

Task
Board

Limit WIP

Flow Control

Kanban board

Visual waste
& waiting

Make
Policies
Explicit

3 bin
system

Implement
feedback

loops

Frequent
releases

Evolve
experimentally

Muda,
Muri,
Mura

Story
Splitting

3C’s

INVEST

Story
Mapping

Personas Queuing
Theory

Manage &
Measure

Flow

Theory of
Constraints

Fast Feedback

Velocity

Lead
time

Optimal
Batch
Sizes

UML
Diagram

Risk Log

Minimum
Viable

Product
(MVP)

Minimum
Viable Change

Feature

Onsite
Customer

5 Whys 8 Wastes
5 S’s

Spikes

Design
Brief

Stakeholder
Mapping

Focal
Question

Relational
MappingTop 5 (ideas)

Business
Model
Canvas

Brainstorming

Rules of
Simplicity

Design
Principles

Low
Fiedelity

Prototypes

Doblin’s 10
types of

innovation

Define
Success

User
Testing

Walking
Skeleton

6 Levels of
Planning

Delphi
estimation

Product
Vision

(elevator
pitch)

Trade off
Sliders

Cause
effect
diagrams

Contract
Game

Project
approach
questionnaire

Storyboards

Facilitated
workshops

Scrum
of

Scrums

Story
telling

Guided
Tour

SPICE

2x2 Matrix

Feasibility
Assessment

Divergent /
Convergent

Thinking

Five E’s

Why-How
Laddering

Programming
Rotation

Refactoring
Map

Revert

Independent
Goal Naively

Mikado
Dependency
Map

5
Focusing

Steps

TOC
thinking
process

Information
Radiators

Improvement
KATA

Dreyfus
Model

Team
eNPS Actionable

Metrics

Monte
Carlo

Poisson
Cumulative
Distribution

Test Driven
Development

Integrated
Testing

Test
Automation

Inspections

7 qns of
context
driven
testing

Continuous
Integration

Automated Test
Code Coverage

Plant Types

Context
Driven
Testing

Reflection
Workshops

Domain
Object
Modelling

Niko-Niko
Calendar

Exploratory
360 degree

reviews

JIT
Ad-Hoc

retrospective Agile Release
Trains (ART)

Parking
Lot

Decision
Tree

Object
Relational
Mapping

Baselined
Requirements

Delivery
Plan

JIT Model
Storming

Continuous
Production Testing

Automated visual
dashboard

Continuous
Deployment

Standardised
Promotion

Path

Source
Code
Mgmt

Config
Mgmt

Virtualisation

Feature Toggling

Artefact
Mgmt

Version
Control

Dynamic
Environments

Componentised
Architecture

Automated
Build

Casual
Loop
Diagrams

Auto-scale & Heal

Buffer
Mgmt

Incremental
Architecture

Incremental
Re-architecture

Usability
Testing

Acceptance
Testing

Sustainable
Pace

Release
Planning

Story
Hierarchy

Metaphor

iterations Feedback
Loops

Test

Feature naming
template

Idea
collaboration

session

Ecosystem
Map

Empathy
Maps

Affinity
Clustering

Context
Mapping

Journey
Maps

PDCA
(Deming cycle)

Kaizen
blitz

Kaizen
burst

Refactoring

Document
Prerequisites

Change
Canvas

Scale
method by

colour

Osmotic
Communication

Reflective
Improvement

Focus
Period
(2hr)

SOLID
principles

4+1 View
architecture

Emerging
Design
(code

craftsmanship)

A3

Update when
if hurts

Team
Safe

space

Safety
(user

solution)

Business
Vision

Development
approach
definition

Time
box

Shift
Left

MoSCoW

Hypothesis
Statement

Value stream
mapping

Lean
Coffee

12 Cardinal Sins

Exploratory
Days

ADKAR Survey

4 MindsetsMarshall
Model

Mock Objects

Marick’s
Test

Categories

Acceptance
Criteria

Understanding
complexity
(Framework

precedes data)

Sense making
(Data precedes

framework)

User
Case

CDEL
method
selection

Barmai
index

estimates

Improvement
Service

Communities
of Practice

System NFR
Overview

page

Feature
Teams

Potentially
Shippable Product

Overall
Retrospective

Requirement
Area

Feature Set (combined,
vertical, horizontal)

Product
Owner

Top down
+ Bottom

Up

Feature
team

adoption
map

Area
Product
Owner

Multi-team
design

workshop

Vision
Page

Team PBR

3 levels coaching (org, team, tech)

Organise
by

customer
value

Project
Charter

5 Dysfunctions of team

Strategic
Theme

ART
Budget

Release on
Demand

SAFe
Patterns

Program
Planning

3 Levels
Portfolio,
Program,
Team

WSJF Agile
portfolio

Architectural
runway

Portfolio
Backlog

Business EPIC

Innovation &
Planning

Sprint

Cycle time

Program
Increment

5C’s of
Agile
Mgmt

Architectural
EPIC

Release
Train
Engineer

Voice of
Customer

Cumulative
Flow

Diagram

Hackathon

4 versions
of lifecycle

Fixed
Delivery

Date

Software
Development

Context
Framework

(SDCF)

Hybrid
waterfall
practices

Product
Mgmt
Team

Architecture
Team

Geographically
distributed

development
(GDD)

Risk Value
Driven cycle

Coordinate
Activities

Focus

Goal
Diagram

Parallel
Independent

Testing

Tiger Team

Card sort

6
Sigma

Meddlers
(change

card game)

Delegation
Poker

Kudos
Cards

10
Intrinsic
desires

Moving
Motivators

Turn
up the
good

7 Tests
of a new
model

Schneider
Culture
Model

Theory X vs.
Theory Y

Collaboration,
Cultivation, and

Competence

Simple
Design

Business
Case

Solution
Architecture

Delivery
Control Pack

CRC Cards

Branching
Strategy

Leadership

FDD

Scaling

Initiate Discover Deliver Release

Disciplined Agile Delivery (DAD)Scaled Agile Framework (SAFe)

Large Enterprise
Scaled Scrum (LeSS)

Design Thinking

Cynefin

Lean

eXtreme Programming (XP)

Human Centered Design

Product Development (FLOW)

Deming Theory of Constraints

Dynamic System Development Method (DSDM)

RUP

Crystal

Mikado Method

Kaizen

Kanban

Rightshifting Management 3.0

Beyond Budgeting

DevOps

Test Driven Dev

Scrum

Prince2 /
Waterfall

Agile
Modelling

2016 Deloitte Consulting Pty Ltd.

The Agile Landscape v3

High
Performance

Technical
Stack

TeamworkBusiness
Domain

Impact

User Stories

Daily Slices

Automated
testing

Automated
build process

Search for
improvement

Daily clean
code

Always Feedback

How About You?
What ideas do you have?

• What are your core beliefs about
delivery / excellence?
• What are your must-have practices?
• How do you ensure understanding?
• How would you deliver value?

Beliefs about
Delivery /
Excellence

Practices

Understanding
& Organization

Feedback &
Improvement

We are uncovering
better ways of

developing software
by doing it and

helping others do it.

