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We uncovered the 
only better way of 

developing software. 
Do it our way.

You’re welcome.



Wow!

This guy makes
a lot of sense. 



Hmm.
I wonder what
Jeffrey’s Agile  

would look like?
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Automated 
testing

Automated 
build process

Search for 
improvement

Daily clean 
code

Start How You Mean To Go: 4 Practices

These practices will slow us to 
start, 

And accelerate us forever more



Understanding is Everything: 3 Levels

Impact

User 
Stories

Daily Slices

• Results in terms of 
measurable change

• Not a scope item list

• Customer viable
• Have Acceptance 

Criteria

• Testable / Provable
• May not be customer 

viable

At the end of every day I 
finished something that 
makes a tangible difference.

broken into

completed via



Time

Work Organization

User Stories are organized into a Story Map,
which serves as 

ª Guide to Investment Experiments
ª Planning Runway
ª Roadmap 

Activity 1

Role Task 1 Role Task 2 Role Task 3 Role Task 4 Role Task 5

Task Detail
(User Story)

Task Detail
(User Story)

Task Detail
(User Story)

Task Detail
(User Story)

Task Detail
(User Story)

Task Detail
(User Story)

Task Detail
(User Story)



Ceremonies: Only When Required
for 

Understanding
for 

Validation
for Finding 

Improvement

Impact X X
Story Map X X
User Story X X X
Daily Slice X X

Release X
Impact 10% Party

Recommended: Every time the team delivers measurable impact to 
the customer or business process there shall be a “Gathering of Joy.”



Feedback Loops
• When the Impact is reached

• When a User Story is done

• When we think we can improve



Slices
• Planning your daily slice requires 

everyone involved in that slice 
and may not require the whole team.

• If it takes too long to plan your daily 
slice, do it differently. For example:
– Try slicing differently
– Try planning your daily slices simultaneously
– Try less planning, more building
– Try _______



What, Not Who: team stuff
• Skills, not roles
– I expect to have the right technical expertise to 

understand business needs, develop in our 
technical stack, and validate our deliverables

• Cross-functional is better than silos 
and sole-functional
– It’s a journey. You can grow into it over time.

• No defined team size



How Big Is It: determining project size

– After the team has agreed to the story map, 
they may estimate user stories in terms of daily 
slices 

– Daily slices may be added up within the story 
map to determine estimated project size, 
release dates, or other metrics

– Anyone may request a re-estimation from the 
entire team 

What about Estimation?



How Big is TOO Big?
We don’t know (!!), but maybe when: 
• Daily slices take more than 5 people
• User stories take more than 20 – 30 

daily slices
• User stories take more than 3 weeks
• Releases take more than 3 months
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ShuHaRi

Perspective 
Mapping

Developed by Christopher Webb 

Small 
releases

Sprint 
Planning 

(1&2)

Product  
Backlog
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User Story
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Schneider 
Culture 
Model

Theory X vs. 
Theory Y

Collaboration, 
Cultivation, and 

Competence

Simple 
Design

Business 
Case

Solution 
Architecture

Delivery 
Control Pack

CRC Cards

Branching 
Strategy

Leadership

FDD

Scaling

Initiate Discover Deliver Release

Disciplined Agile Delivery (DAD)Scaled Agile Framework (SAFe)

Large Enterprise 
Scaled Scrum (LeSS)

Design Thinking

Cynefin

Lean

eXtreme Programming (XP)

Human Centered Design

Product Development (FLOW)

Deming Theory of Constraints

Dynamic System Development Method (DSDM)

RUP

Crystal

Mikado Method

Kaizen

Kanban

Rightshifting Management 3.0

Beyond Budgeting

DevOps

Test Driven Dev

Scrum

Prince2 / 
Waterfall

Agile 
Modelling
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How About You?
What ideas do you have?

• What are your core beliefs about 
delivery / excellence?
• What are your must-have practices?
• How do you ensure understanding? 
• How would you deliver value?



Beliefs about 
Delivery / 
Excellence

Practices

Understanding 
& Organization

Feedback & 
Improvement
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