AGILE NUMBERS

The Signposts on Your Agile Journey

By Akrem Saed

RELEASE MGMI. HIGH PERFORMANC AUTOMATION

Current Of State Agile Practice⁵

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and helping others do it. Through this work we have come to value: Individuals and interactions over processes and tools Working software over comprehensive documentation Customer collaboration over contract negotiation Responding to change over following a plan That is, while there is value in the items on

the right, we value the items on the left more.

Kent/Beck Mike Beedle Arie van Bennekum Alistair Cockburn James Grenning Jim Highsmith Andrew Hunt Ron Jeffries Robert C. Martin Steve Mellor Ken Schwaber Jeff Sutherland

Agile didn't start as a

agilemanifesto.org

"landscape"

nifesto for Agile Software Developm

We are uncovering better ways of developing software by doing it and helping others do it. Through this work we have come to value:

viduals and interactions over processes and rking software over comprehensive document astomer collaboration over contract negotiat Responding to change over following a plan That is, while there is value in the items on

Why Data?_

agilemanifesto.org

Good Questions

Which one is more popular?

Which one is endorsed by my agile coach?

Which one did Netflix use?

Which one can scale to the size of my organization?

Which one is easy to pick up?

Better Questions_

Which ones have data behind them?

Current State of Discourse $\rightarrow \rightarrow \rightarrow$

Subjective Measures_

"Google has been using it for years"

"I've used it in a past project and worked wonders"

- "Our competitors are using it "
- "I've read this blog post"

"It's trending on Twitter/publications/conferences"

"It made sense to me!"

Objective Measures (a.k.a Agile Numbers)

Controlled Scientific Studies

Statistical Analysis of IT Behavior

Comparative Case Studies

Large-Scale Experiments

Small-Scale Experiments

This is True True This This is Truth_

Scientific Studies & Research_

What We Know About Software Engineering_

CUSPC

James Lind (1716-94) 1747: (possibly) the first-ever controlled medical experiment

× cider × sea water × sulfuric acid √oranges × vinegar × barley water

No-one paid attention until a proper Englishman repeated the experiment in 1794...

"Bits of Evidence:

What We Actually Know About Software Development, and Why We Believe It's True"

Greg Wilson, January 2010

https://vimeo.com/9270320

Standard Of Proof_

- ".. the debate is hampered because not enough people know how to develop DSLs effectively"
 - Martin Fowler, 2009

u n

"One of the smartest guys in our industry made two substantive claims in an academic journal without a single citation I think the debate is hampered by low standards of proof"

- Greg Wilson, 2010

Raise the Standard: Studies_

Anchoring and Adjustment in Software Estimation

	(Aranda and Easterbook 2005)
Finding: the anchor mattered more than experience, how formal the estimation method was, or anything else.	

Raise the Standard: Studies_

The two biggest causes of project failure are poor estimation and unstable requirements.

(van Genuchten 1991 and many others)

For every 25% increase in problem complexity, there is a 100% increase in solution complexity.

(Woodfield, 1979)

If more than 20-25% of a component has to be revised, it's better to rewrite it from scratch.

(Thomas et al, 1997)

Raise the Standard: Studies_

Rigorous inspections can remove 60-90% of errors before the first test is run.

(Fagan 1975)

Physical distance does not affect post-release fault rates. Distance in the organization chart does.

(Nagappan et al (2007) & Bird et al (2009)

Want more studies?_

Making Software: What Really Works, and Why We Believe it

By Andy Oram & Greg Wilson

https://goo.gl/aPUzGo

Folk Medicine in IT_

Study What Already Works in the Wild

Project Aristotle Quest to Build The Perfect Team

Aristotle:Test the commonly-held myths_

"... there was nothing showing that a mix of specific personality types or skills or backgrounds made any difference. **The 'who' part of the equation didn't seem to matter.**"

Abeer Dubey, leader of Project Aristotle

Aristotle: The Safety Hint_

What distinguished the **"good" teams** from the dysfunctional groups was **how teammates treated one another.**

Evidence for a Collective Intelligence Factor in the Performance of Human Groups

Woolley et al. (2010)

Aristotle: The Safety Hint_

Equal Talk Time

"As long as everyone got a chance to talk, the team did well, But if only one person or a small group spoke all the time, the collective intelligence declined."

- Anita Williams Woolley

Aristotle: The Safety Hint_

High average social sensitivity

Teammates were skilled at figuring out how others felt based on their tone of voice, expressions and other nonverbal cues.

Aristotle: 1+1 Psychological Safety_

"[Psychological safety is] a sense of confidence that the team will not embarrass, reject or punish someone for speaking up,"

- Amy Edmondson (1999)

TEDx Talk > <u>https://goo.gl/eXbxXn</u>

Psychological Safety

Team members feel safe to take risks and be vulnerable in front of each other.

Dependability

2

3

4

5

Team members get things done on time and meet Google's high bar for excellence.

Structure & Clarity

Team members have clear roles, plans, and goals.

Meaning

Work is personally important to team members.

Impact

Team members think their work matters and creates change.

Aristotle: The Finding_

"There were other behaviors that seemed important as well — like making sure teams had clear goals and creating a culture of dependability. But Google's data indicated that **psychological safety, more than anything else, was critical to making a team work**."

More About Project Aristotle_

Google re:Work > <u>https://goo.gl/19k4u7</u>

State of **DevOps Report**

Presented by:

Surveys & Statistical Models_

DevOps Report: The Data_

27,000

Survey responses

Å 3,200

People

DevOps Report: Diverse Data Set_

Demographics

DevOps teams increased

- from **16%** in 2014
- to **1.9 %** in 2015
- to 22% in 2016
- to **27%** in 2017.

Number of employees

Number of servers

5%	100,000+	
3%	50,000 - 99,000	
6%	10,000 - 49,000	
6%	5,000-9,999	
9%	2,000-4,999	
18%	500-1,999	
20%	100-499	
20%	99 or fewer	
13%	Don't know	

DevOps Report: Diverse Data Set_

Respondent by Regions

DevOps Report: IT Performance_

DevOps Report: IT Performance Gap

Throughput gap

Stability gap

High Performing Teams

Low Performing Teams

Vs

IT Performance Gap

IT Performance Metrics	2016	2017
Deployment frequency	200x more frequent	46x more frequent
Lead time for changes	2,555x faster	440x faster
Mean time to recover (MMTR)	24x faster	86x faster
Change failure rate	3x lower (1/3 as likely)	5x lover (1/5 as likely)

Table 1: Changes in IT performance of high performers, 2016 to 2017

/////DevOps Report: ////IT Performance Gap

Faster time to market

High responsiveness to market changes

The High Performing Teams' Advantages

Better customer experience

DevOps Report: Technical Practices_

DevOps Report: Automation

33% more of configuration management

27% more of testing

30% more of deployments

27% more of change approval processes

High Performing Teams

Vs

Low Performing Teams

DevOps Report: Automation

Medium- were doing more manual work than low-performing teams in

2017 State of DevOps Report / presented by Pupplet + DORA /// DevOps Report / presented by Pupplet + DORA /// DevOps Report / DevOps Report / Factors/that/positively contribute/to continuous delivery: Continuous delivery:

"Continuous Delivery significantly contributes to both lower deployment pain and higher IT performance"

DevOps Report: Architecture

In 2015, high-performing teams were more likely to have loosely coupled architecture.

In 2017,

- Leosely Coupled Teams contribute to better IT performance.
- Loosely Coupled Architecture derives IT performance.
 - Bounded Contexts (Domain Driven Design)
 - APIs
 - Test doubles for testing

DevOps Report: Continuous Delivery & Teams

Biggest contributor to Continuous Delivery (bigger than test and deployment automation) is if a team can do:

- Make design changes without permission or dependency
- Complete its work without involving other teams
- Deploy and release on demand
- Do most of testing on demand without integrated test environment
- Deploy during business hours with negligible downtime

2016

High-performing teams spent

22% less time on unplanned work and rework

29% more time on new features or code

2017

Quality

High-performing teams spent

DevOps Report:

21% less time on unplanned work and rework

44% more time on new features or code

DevOps Report: Trunk-Based Dvlpmnt._

In 2016, higher software delivery performance contributed by:

Merging code into trunk on daily basis

Having short-lived branches and forks (less than 1 day)

Having fewer than three active branches

In 2017, report analyzed how long branches live and time to integrate branches into trunk

High-performing teams spend only **hours** on both measures

Low-performing teams spend days

DevOps Report: Lean Product Management_

In 2016

lean product management practices predicted:

- Higher IT performance
- Lower deployment pain

→ 2016 + 2017

A virtuous cycle between LPM and software delivery pipeline

DevOps Report: Lean Product Management_

In 2017

the report found IT performance predicts lean product management practices

DevOps Report: Impact of Leadership_

DevOps Report: Transformational Leader

Statistically significant differences between high-performing and low-performing teams when it comes to 5 leadership characteristics

DevOps Report: Transformational Leader

Teams with **least transformative leaders are 50% less likely** to exhibit high performance

DevOps Report: Transformational Leader

Figure 1. Structured equation model showing relationships between constructs

Objective Team Transformation How should your team evolve?

Dig Deeper

VI

Objective Team Transformation

adida

AIG

oddas

AIG

Pick a Practice or AIG

Favor Objective Measures

AIG

Measure Impact

AIG

Measured Impact

AIG

oddas

AIG

K

Who was this Akrem dude ?

WHO WHERE WHEN WHY WHAT HOW_