
@tottinge

A.B.L.E.
Always Be Learning and Experimenting

modernagile.org

Make Safety A
Prerequisite

Experiment and
Learn Rapidly

@tottinge

Principles

Wikipedia: Yerkes-Dodson Law

Productivity
E(applied)

E(required)

UNCERTAINTY

EFFORT RISK

UNCERTAINTY

EFFORT

Low risk?
Low uncertainty?

Nothing to learn!
Why waste human EFFORT?
AUTOMATE THIS AWAY!

Randall Munroe
xkcd.com/1205/

UNCERTAINTY

RISK

UNCERTAINTY

High risk?
High uncertainty?

USE MORE brainpower to
mitigate the knowledge
gap!

Next Month

The Next Month

The Next Month

This Month

Unquestioned
Surface

Problems

It slows me down to work
in this $%!@$? code!

We can’t afford to waste time
on testing and refactoring

right now

Developers are too slow.

Quality is too low

We don’t get to spend
enough time on-task

We’ve got to start
handing things off faster

I’ve got too many things
in progress right now

Work is not predictable

We keep repeating the
same mistakes

We need 10x
higher velocity

No time to invest in
automation right now

We just need to be more
disciplined and careful

We keep repeating the
same mistakes

Working together in
groups is inefficient

All these defects are
wrecking our schedule!

We’d be on schedule if our
initial estimates were better

We suck at estimating.

Obviously, our people
are not good enough

@tottinge

It is too slow.
And too buggy.

And we can work on that.

@tottinge

Fast, Unsafe

Fast, Safe

Fall From Grace

@tottinge

Fast, Unsafe

Fast, Safe

Brutal Impasse

Fall From Grace

@tottinge

Fast, Unsafe

Fast, Safe

Brutal Impasse

Fall From Grace

Slow, Unsafe

!!

The Gra
vity Sl

ide

@tottinge

Fast, Unsafe

Fast, Safe

Brutal Impasse

Fall From Grace

Slow, Unsafe

!!

The Gra
vity Sl

ide

@tottinge

Fast, Unsafe

Fast, Safe

Brutal Impasse

Fall From Grace

Slow, Unsafe

Slow, Safe

!!

Relearn,
Retool

The Gra
vity Sl

ide

@tottinge

Fast, Unsafe

Fast, Safe

Brutal Impasse

Fall From Grace

Slow, Unsafe

Slow, Safe

!!

Relearn,
Retool

The Gra
vity Sl

ide

@tottinge

Fast, Unsafe

Fast, Safe

Fall From Grace

Slow, Unsafe

Slow, Safe

The Gra
vity Sl

ide

Relearn,
Retool

Relearn,
Retool

@tottinge
Sa
fe

ty

Speed

@tottinge
Sa
fe

ty

Speed

@tottinge
Sa
fe

ty

Speed

@tottinge
Sa
fe

ty

Speed

@tottinge
Sa
fe

ty

Speed

@tottinge
Sa
fe

ty

Speed

@tottinge

WHAT IS THE REAL WORK?

Real Work Bureaucratic
Silliness

(RW) (BS)

The more junior you are, the fewer. It goes up with
experience.

Defect work is 60%(+) of team’s total effort

Informal survey

Waiting/Queuing

Informal survey

Waiting on Answers
(swapping tasks to tolerate waiting)

Interruptions
(defect, outage, QA “bounce”, questions, expert finishes)

Waiting on Machines
(or skipping tasks to avoid waiting)

(assumes individual task environment)

Undelivered tasks in play per
individual:

5

Five jobs?

That means when one is getting attention, the
other 4 are not.

One job holding four others hostage?

Roughly 64% of delivered features
are seldom/never used.

JUNK
Features

A given useful feature gets maybe 6% of a
programmer’s time and attention...

So, roughly...

… and not all of that 6% at the same time.

J. Gall

The Systems Bible - 1975

Systems in general work poorly or not at all.

Complicated systems seldom exceed 5% efficiency.

The Primal Scenario

Dr. Kurt Lewin

Principles of Topological Psychology (1936)

B = f(P, E)

Your productivity is
unreasonably HIGH*

*given the circumstances

Expectations ActualsCuriosity Space

Benjamin Zander: “How Fascinating!”

@tottinge

Fast, Safe

Slow,
Unsafe

Slow, Safe

Relearn,
Retool

Relearn,
Retool

… and we’ve not even touched on building the
right thing (customer development).

See:

Learning isn’t a task we do instead of working.

11/12ths of our work is learning and thinking.

The other 1/12th is just typing.

@tottinge

Practices

Kaizen

● Daily Kaizen (2-second lean)
● Kaizen Events (see Fastcap videos)

Paul Akers

2 Second Lean
http://paulakers.net/books/2-second-lean

http://paulakers.net/books/2-second-lean

Teaming

● Pair programming
● Mob programming
● Swarming

@tottinge

Waste Snake

● Awareness of inhibitors
● Fodder for kaizen events
● Opportunity for daily kaizen
● Raise issues to management

Promise Debt

List of things we have deferred, which keep
work from being done done.

● So you don’t forget
● Manage cognitive load
● Make remaining work

visible

“Experiment” Budget

● Try things without committing
● Learn to evaluate merit of approaches
● Constantly seek “better”
● Call kaizen events
● Move improvement to “RW” side of line

Some results:
● Test reporting tool automation
● Local database for engineering builds
● New testing libraries
● Faster build
● IDE/editor auditions

TIL

● Today I Learned
● Media doesn’t matter
● Must refresh regularly
● Celebrate wins
● Share techniques
● Don’t have to be big wins

@tottinge

Always Be
Learning

and
Experimenting

ABLE

● Kaizen
● Teaming
● Waste Snake
● Promise Debt
● TIL

… and what else?

tottinge@IndustrialLogic.com

@tottinge

http://agileotter.blogspot.com

